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The Dirac relativistic equation for the hydrogen atom as augmented by 
dual interaction terms is solved exactly and the eigenvalues for the bound 
states are determined. These are E, = ~[1 + K2/(n + s)2] -~12, with 
s 2 = k 2 - K2(1 _+ A) 2, where A is a constant which is a measure of the 
strength of the dual interaction relative to the standard interaction ~,"A,. 
It is shown that the ratios of the experimental values for the Lamb shifts 
of various energy levels in hydrogen and singly ionized helium are correctly 
given by the theory. The origin of the anomalous magnetic moment and, 
in fact, the operator for the total magnetic moment is given. 

1. I N T R O D U C T I O N  

The work  to be presented is, in a real sense, a test o f  interaction theory, 
what  may  be called the experimentum crucis for  the theory.  Therefore,  i t  
is for tuna te  tha t  the p rob lem that  is under taken  can be solved exactly. The 
relat ivist ic  hydrogen  a t o m  as t rea ted  by  Di rac  will be al tered to the extent  
requi red  by in terac t ion  theory  (Schwebel,  1972). F r o m  an analysis  o f  electro- 
magnet ic  theory,  we found  that  each convent ional  in terac t ion  quant i ty ,  
such as force, energy, etc., has a dual  in the tensor  sense. I t  is these add i t iona l  
quant i t ies  tha t  have been added  to the wel l -known Dirac  equat ion  to form 
in terac t ion  theory ' s  version o f  the relativist ic hydrogen  atom. 

W e  will solve this new p rob lem and obta in  the exact  eigenvalues for  
the b o u n d  states. Once these have been ob ta ined  we will find that  the L a m b  
shift is, up  to an exper imenta l ly  de te rmined  constant ,  p roper ly  accounted  
for,  in fact, de te rmined  for  all energy levels. Moreover ,  we will show tha t  
the exper imenta l ly  de te rmined  rat ios  o f  the L a m b  shifts for  known  energy 
levels o f  hydrogen  are, to good  approx ima t ion ,  the same as those for  singly 
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ionized helium atoms. And this is, to the same approximations, the 
theoretical result. 

The following section will contain the augmented Dirac equation for 
the relativistic hydrogen atom and its exact solution. The next section con- 
tains the computation of the Lamb shifts and their comparison with ex- 
perimental data. The last section will critically examine the results obtained, 
their limitations, and the problems that arise which the theory must solve. 
In particular, the operator for the magnetic moment  of  the electron will be 
given. It  contains a contribution from dual interactions which is responsible 
for the "anomalous"  behavior of the magnetic moment.  

2.  R E L A T I V I S T I C  E Q U A T I O N  F O R  T H E  H Y D R O G E N  A T O M  

Dirac's equation for the hydrogen atom as augmented by terms from 
the interaction theory of the electromagnetic field is 

[-i~,  ~ 8, + y"(1 + AyS)A,(q)e p + ~]r = 0 (2.1) 

Much of the notation is standard, except for A, which is a constant to be 
determined experimentally. It  is a measure of  the strength of the dual con- 
tribution relative to the conventional term. The four-potential A,(q) is due 
to the proton, labeled the qth particle, and e ~ < 0 is the electronic charge. 
We have chosen units such that h = c = 1. The mass ~ is the reduced mass 
of  the system. We also have 

o) ( ~  (o I io) ~o 0 ~ = - i 
= --  ' Y =  - ~  0 ' 

(7o)2 = 1, (~k)2 = ( ~ ) 2  = - 1 ,  k = 1, 2 ,  3 

The v's are the Pauli matrices. 
In spherical coordinates equation (2.1) for the hydrogen atom becomes 

+ 6'r~'~ + Y~ + 'X~'s) 7 - ~'~ + ~ = 0 (2.2) 

in which we have chosen the standard time dependence for the wave function 
and 

i r 
V~ = Y ' r '  P~ = r ' P  r '  K -- ePe q, r = -r 

K=_i~,o(~,O~Sy.L+i)= (~.L+I 0 ) 
- ( ~ . L  + 1 

(2.3) 
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All operators satisfy the same commutat ion relations as in the Dirac 
case, except that K does not commute with the Hamiltonian. This is due to 
the dual interaction term, which contains 7 ~ and 

Ky s = - r S K  (2.4) 

However, K 2 does commute with y~ and the Hamiltonian. It  follows from 
the requirement that the Hamiltonian be Hermitian that the constant A 
must be imaginary, i.e., ), = iA with A real. 

Because of equation (2.4), the wave function is assumed to be a linear 
combination of the eigenfunctions of  K with eigenvalues k and - k (k > 0). 
The eigenvalues of  K 2 = ( j  + 1/2) 2, are the familiar ones where j is half 
an odd integer. I t  follows that k = j + t/2 takes on all positive integral 
values 1, 2, 3 . . . . .  

We introduce the notations 

Kr = kr 

and 

Kr = - k r  

= i i l ( r ) + 3  
r \gl(r)r 

In the latter, f l (r)  and gl(r) are scalar functions of  r and r et are two com- 
ponent spinors which are functions of  the angles and satisfy well-known 
relations (Corinaldesi, 1963), 

( a . L  + 1)r ~ = k@' 

and 

(n .L + 1)~ z = - k r  ~ 

I t  follows from equation (2.3) and (2.5) that 

satisfies 

r \g2(r)r 

(2.5) 

(2.6) 

Kr = - k r  

To reduce equation (2.2) to one dependent only on r, we assume that 
the wave function has the form 

r162 +~- 
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Substituting it into equation (2.2), using equations (2.3), (2.5), (2.6), and the 
orthogonality of ~b ~ and ~b u, we obtain the following set of equations: 

(a  1) ik  K i,~h 
- i  ~ + 7 gl  - r g l  + r f l  - - 7 - g 2  + (t* - E ) f l  = 0 

(0 1 ) i k  • i K A  
- i  ~r + 7 g~ + 7 g~ + 7 A - -7- gl  + (t~ - E ) A  = 0 

(2.7) ( a  1 ) i k K i K h f 2  
+ i  ~ + 7 f l  -- r f l  --  7 g l  + r + (1*+ E)g~ = 0  

. ( a  + 1 \  ~ ik  x &a 
, ~ 7)f2 + r f2 - 7g2 + 7 1 1  + (~ + E)g2 = 0 

Next we set 

f~ = F~/r, f2  = iF2/r, gz = iG1/r, g2 = G2/r, and h = iA 

and write the resulting equations as a matrix 

and 

M = 
0 k K ~A F2 
~ a  - ~  k , ~ = (2 .8 )  

- -  G2 

- x A  0 - F1 

A = 

0 0 0 tz - E )  

0 0 --(/z + E) 0 

0 E - ~  0 0 

/ z + E  0 0 0 

To solve equation (2.7), we assume that 

= e-~rr~+q&> (2.9) 

where summation over the repeated index n is over all positive integers and 
zero. Each IA~) is a constant four-component column matrix and [Ao) # 0. 
The constant s remains to be determined from the matrix counterpart to the 
indicial equation. The role of c~ is the usual one. 

with 
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The substitution of  equat ion (2.9) into equat ion (2.8) and the equat ing 
of  coefficients o f  like powers  of  r leads to the relation 

(n + s + M)]A~)  + (A - a ) [ A . _ l )  = 0 (2.10) 

For  n = 0 and [Ao) # 0 it follows that  the determinant  

I ~ + M [  = 0  

which requires that  s be chosen so tha t  

Is 2 - k = + K2(1 - A)2][s 2 - k 2 + K2(1 + A) 2] = 0 (2.11) 

The solution, equat ion (2.9), in order  to behave proper ly  at  the origin, r = 0, 
requires that  s > 0, i.e., 

s = + [ k  2 - K~(1 + a)21 z/2 (2.12) 

For  n > 1, equat ion (2.10) becomes 

(n + s + M ) I A ,  } = - ( a  - a ) [ a , _ , )  (2.13) 

We solve this equat ion by first diagonalizing the matr ix  (A - a): 

[n + s + KE •A(it + E)  k - Kit 0 

KA (It -- E )  KE Kit n + s + - -  0 k+--  
Og O: (g 

KE KA(It + E)  k+ 5--~ 0 n + s - - -  
(Z O~ (g 

0 k Kit KA (it -- E) KE 
- -  n + s - - - -  

(g O~ (g 

A t  I . >  

(o) 
0 

= 2~ [A&_I> (2.14) 
1 

1 

where we have chosen ~ = (it2 _ E2)lj~ and the ]A~) are the t ransformed 

I & ) .  
Equat ion  (2.14) is rewrit ten in terms of  the components  of  ]A') .  We 

designate the first two components  of  [A'} by [a~) and the last two by Ib~): 

In+s+ •E KA(F E) (k KF OKra 1 
- - i~+ - -  l a ~ ) +  ~ Ib~> = 0 

\,~A (It- n + s + 5~f ] 0 k+ 
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k + KIx 0 n + s - - -  ~r - 
(Z (Z (g 

la,,> + 
0 k - , :A  (tz - E )  

- -  n + s  
IX 

For  large n, these equations reduce to 

n + s + la~> + [b.)  = 0 

0 k +  K--~F 

(~+~_~ o) ( ~) 
(Z 

]a,,> + n + s - Ib,J = 2~[b,,_~> 

0 k -  

Eliminating Ibm>, we get 

[k 2 K~I~z~ (n+ S K_E.)(n+ s + K__ff_E)],a.> 

As n increases we see that  

a71 -- 1 ~  

[a,~> ~ 25 [a,~- l>, 
n 

(2.15) 

which is the same behavior  o f  the coefficients as in the Dirac  case (Schiff, 
1949). As in that  situation, the series does not  converge sufficiently strongly 
to  give a square /n tegrab le  soIution. Therefore,  we require that  

n + s + KE, = 0 (2.16) 

where we have chosen E ,  such that  equat ion (2.16) is satisfied and, in order 
to simplify notat ion,  consider n replaced by n + 1 in equat ion (2.15). Under  
these condit ions we have [a,,+l> ,-~ 2o~[a,,>/n ~ and the convergence of  the 
sequence is then sufficiently strong. 

I t  follows f rom equat ion (2.16) that  

[ ~ ]-1/2 
E.  = /z 1 + (n + s) 2 (2.17) 
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where 
s = [ k  2 - K~(1 + A ) 2 ]  "2 

In form, equation (2.17) is precisely that given in Dirac's solution to 
the hydrogen atom. If A is set equal to zero, then equation (2.17) is the same 
as Dirac's. However, if A is not zero, then there is not only the difference 
in the corresponding s values, but there is also the distinction that in s, k 
is always positive, whereas in Dirac's solution k may have both positive 
and negative values. This leads to the degeneracy of the levels, but in the 
above result, since k can only be positive, there are two levels with the same 
k but slightly different energy values. In other words, the degeneracy has 
been lifted. 

3. L A M B  S H I F T  

Equation (2.17) for fixed n and k gives the exact energy values for the 
levels that are close in energy value and that would be identical in value 
were it not for the effect of the dual interaction. Hence the energy difference 
between two such levels is the Lamb shift. 

We expand equation (2.17), with s as given, as a power series in the 
variable K2(1 + A)2: 

K2 ]-1 /2  ~ 1 + 
E~,k = ~ 1 + (n ~-k) 2j 2 ( ~  k ( n + k )  3 + " "  

(3.1) 

Fixing the values for n and k, n' = n + k, the corresponding Lamb shift is 

[ ~2 ] -a/2 2AK4 
AEn,~ = E . , k ( -A)  - E.,k(A) = ~ 1 + (n -~ k)  2 k (n  + k)  3 + " "  

(3.2) 
up to the order K2(1 _+ A) 2. 

The constant A, which is a measure of the weight of the dual interaction 
relative to the conventional interaction term, can be evaluated by equating 
the theoretical calculation to the experimentally determined value for the 
Lamb shift. This will be done, but it is interesting to consider the ratios of 
Lamb shifts for different values of 17 and k for the same atom. Such ratios, 
to the approximation given above, should be independent of A, and there- 
fore of those characteristics of the atom upon which A may depend. Thus, 
we can consider hydrogenlike atoms, i.e., those that have been ionized to 
the extent that the remaining system consists of a nucleus about which we 
have an orbiting electron. Fortunately, there are data both for hydrogen 
and singly ionized helium atoms (Lautrup et al., 1972). 
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The da ta  for  hydrogen are (n' = n + k) 

H (n' = 2) 

H (n' = 3) AE2,1 = 

H (n' = 4) AE3,1 = 

AE2,1/AEz.z = 0.298 

and for  singly ionized helium, 

He  + (n' = 2,) 

He  + (n' = 3) 

He  + (n' = 4) 

AE2,1/AEI,1 = 0.298 

AE~,I = 1057.90 + 0.06 M H z  

1057.86 + 0.06 M H z  

314.810 + 0.052 M H z  

133.18 + 0.59 M H z  

AE3,t/AEz,z = 0. t26 

AEI,1 = 14045.4 

AE2,~ = 

AE3,~ = 

+ 1.2 M H z  

4183.17 _+ 0.54 M H z  

1776.0 + 7.5 M H z  

1768.0 _+ 5 M H z  

1769.4 + 1.2 M H z  

AE3,1/AEI,1 = 0.126 

So that  within the accuracy of  the data  the rat ios of  the corresponding 
L a m b  shifts are the same, which confirms, to the approx imat ion  made,  the 
predict ion of  the theory. 

The  theoretical values 
(3.2), 

for  the same ratios as above are, f rom equat ion 

AE2,1 _ [4 + ~c2] 3/2 8 = 0.296 
AEI,1 L 9 - - - ~  2j ~ 2-ff 

AE,,I  _ [ 4  + K2] 8/2 1 = 0.125 

in which •2 = (Za)2 has been neglected. 
The  results for  hydrogen have been obtained earlier (Sachs and Schwebel, 

1961). Those  for  ionized helium and for hydrogenlike a toms are the results 
o f  the present  theory. The experimental  data  available seem to be adequately 
covered by the approximat ion  given by equat ion (3.2) to the exact result, 
which is obtainable f rom equation (2.17). The latter equat ion is capable  
o f  giving the L a m b  shifts for all the other energy levels and a test o f  its 
validity over these must  await  more  experimental  data. 

The determinat ion of  A to the order of  approx imat ion  given by equat ion 
(3.2) is, for  hydrogen,  

A~ = 1.2076 x 10 -2 
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and for singly ionized helium 

A~e+ = 1.0022 x 10-2 
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4. DISCUSSION 

The difference in the value of A~ and A~e+ indicates that the A's must 
depend on physical parameters that distinguish the chemical elements. In 
particular the interaction between the magnetic moments of  the nucleus and 
orbiting electron has been omitted. It  is in that direction where we may hope 
to obtain some insight into the dependence of A on various physical param- 
eters. A further indication that it is the magnetic moment  interaction that 
must be investigated comes from the realization that the dual interaction 
results in a Lamb shift for the ground state of  the hydrogen atom. 

The energy shift is eight times as large as that for the level with n' = 2. 
But in addition to the Lamb shift of  the ground state energy level, there is 
a hyperfine structure splitting due to the interaction between the magnetic 
moments of  nucleus and orbiting electron. The resulting shift must be the 
net effect of  the two interactions. 

A study that takes into account both the magnetic moment  interaction 
and the dual interaction that accompanies it is underway. The total magnetic 
moment  operator (the conventional and its dual) has been found to be 
represented by the expression 

ePh i(1 + iAyS)y~ 

It  is interesting to note the addition of an "anomalous" term to the 
usual conventional magnetic moment  operator. Moreover, the "anomalous"  
contribution to the magnetic moment  operator is related to the constant A 
which appeared in the study of  the Lamb shift. The work on this aspect of  
the problem is being prepared for publication. 
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